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Abstract

In numerous metals and alloys, ductile fracture involves void nucleation, growth, and coalescence. In this contribution, void

growth has been quantitatively characterized in an extruded 6061-wrought Al-alloy as a function of stress state in notch tensile test

specimens. Digital image analysis and Stereology have been used to estimate the volume fraction and three-dimensional number

density of voids in a series of interrupted notch tensile test specimens where the local stress state is predominantly triaxial. Finite

elements (FE) simulations have been used to compute the stress states at different locations in the specimens. The computed stress

states and experimentally estimated average void volume are utilized to verify analytical void growth models. Lack of agreement

between the predictions of the models and the experimental data is due to interactions between neighboring voids, which are ignored

in the theoretical models, and continuous void nucleation. The following empirical damage evolution equation is obtained from the

experimental data on void volume fraction expressed as % (f ), and the corresponding local equivalent plastic strain (op) and stress

triaxiality (I ) computed from FE simulations: f�/a�/b ln[op]�/cI . In this equation, a , b and c are empirical constants whose values

depend on the alloy chemistry, heat treatment, and microstructure. The equation is useful only for 6061(T6) Al-alloy.
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1. Introduction

6XXX series of wrought aluminum alloys are widely

used for automotive and aerospace structural applica-

tions due to their good extrudability, weldability, and

excellent corrosion resistance. Aluminum 6061 is a

typical alloy of this series that is used for applications

such as canoes, railroad cars, towers, pipelines, and

other medium strength structures where good weldabil-

ity and excellent corrosion resistance are needed.

Microstructure of 6061 Al-alloy contains inclusions/

particles of brittle phases dispersed in a ductile matrix

(Fig. 1). Ductile fracture of such alloys involves cracking

of brittle phase inclusions/particles (damage initiation/

nucleation), growth of voids around the cracked brittle

phase particles/inclusions, and void coalescence. It is

observed that significant void growth occurs only under

a triaxial stress state [1]. Therefore, to understand such

damage evolution process, it is of interest to quantita-
tively characterize void growth under a loading condi-

tion that generates significant triaxiality in the stress

state. Accordingly, in this contribution, void growth

around cracked iron rich intermetallic particles is

quantitatively characterized in a series of notch-tension

test specimens of a peak aged extruded 6061 Al-alloy, as

a function of equivalent plastic strain and stress

triaxiality. The experimental data have been utilized to
verify void growth models, and to generate an empirical

damage evolution relationship for this alloy. A brief

background on the void growth models is given in

Section 2. The experimental work and results are

presented in the subsequent sections.

2. Void growth models

Numerous analytical void growth rules have been

developed under different assumptions [2�/6]. Rice and

Tracey [6] have developed a void growth model, which
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predicts the growth of a void in an infinite, rigid,

perfectly plastic material subjected to a uniform remote

strain field. Their model assumes that there is only one

spherical void, which is embedded in a rigid perfectly

plastic matrix of infinite size. According to Rice and

Tracey [6], the void growth can be described by the

following equation:
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In Eq. (2), V is the void volume at the equivalent plastic

strain o , and V0 is the initial void volume at the

equivalent plastic strain o0.

McClintock [2] has proposed a model for the void

growth, which predicts the growth of an elliptical hole in

a viscous material under an applied stress, using an

axisymmetric geometry. However, McClintock’s model

is considered to be a good approximation for growth of
spherical voids as well, and recently it has been

successfully applied to model damage evolution invol-

ving nucleation, growth, and coalescence of voids in

three-dimensional microstructure of a cast A356 alloy

[7,8]. For growth of a spherical void, the model gives the

following equation:
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In Eq. (3), R0 is the initial radius of a spherical void and

Vvoid is its volume after pore growth at equivalent strain

level of o (t), n is the strain-hardening exponent, I1 is the

first invariant of the stress tensor (I1�/skk ), and J2 is the
second invariant of the stress tensor (J2�/(1/2)SijSij and

Sij �/sij�/(1/3)dijskk). This equation reveals that stress

triaxiality, strain-hardening coefficient, strain rates,

temperature regimes, etc. have dominant influence on

the void growth rate.

3. Experimental

The experiments were performed on the specimens

drawn from 88 mm diameter extruded round bar of 6061

Al-alloy in T651 condition, supplied by ALCOA. The

chemical composition of the alloy is given in Table 1. In

the extruded alloy, the Mg2Si and Fe-rich intermetallic

constituent particles are aligned along the extrusion axis

(Fig. 1).

3.1. Notch-tension tests

In the extruded Al-alloy bar stock, microstructural/

chemical gradients may exist in the radial direction. To

ensure that all test specimens have statistically similar

microstructure and the same alloy chemistry, all the

specimens were extracted from the bar stock at a radial

distance of 20 mm from the bar center. For the notch
tension tests, the loading direction was parallel to the

extrusion axis. These tests were performed on a MTS

880 servo-hydraulic test frame. Specimens having two

different notch radii were used in order to vary the

induced levels of stress triaxiality. Notched-tension test

samples contained a gage section, which was 12.7 mm in

diameter and they contained notch of either 19.8 or 2.49

mm radius. The geometry of the notched tensile test
specimens is shown in Fig. 2. To study void growth as a

function of triaxial stress-state, a series of interrupted

tests were performed at different displacements ranging

from 75 to 98% of the failure displacement. The speci-

men displacements were monitored by using an extens-

ometer that spanned the entire notched region. Figs. 3

Fig. 1. Typical microstructure of the 6061 Al-alloy in an unetched

condition.

Table 1

Chemical composition of 6061 Al-alloy

Element Zn Ti Si Mn Mg Fe Cu Cr Al

Wt.% 0.02 0.01 0.65 0.04 1.06 0.37 0.28 0.2 Balance
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and 4 show load displacement curves of two different

notch radii specimens.

3.2. Finite element simulations

In the notched tension test specimens, the parameters
such as stress triaxiality and equivalent plastic strain

vary significantly in the notch region. Further, these

parameters can also be varied in a controlled manner by

changing the notch radius, which provides an opportu-

nity to study the effect of stress triaxiality and other

parameters of stress state on void growth. The geometry

of the present notch-tension specimens is such that, in a
given specimen at a given applied load/displacement, the

stress triaxiality is the highest at the center of the

specimen in the notch region, and the lowest at the

edge, whereas the plastic strain is the lowest at the center

and the highest at the edge. To understand the

dependence of void growth on the stress state, FE-based

simulations were performed to compute the maximum

principal stress, stress triaxiality, and equivalent plastic
strain in the notch region of the specimens for different

applied load/displacement levels using ABAQUS software

package. The FE-simulations are based on the follow-

ing:

1) Experimental uniaxial tension stress�/strain curve of

6061 alloy [11] was used as the constitutive equation

in the FE-model to simulate the elastic�/plastic

response. The simulations were performed using

the PLASTIC computer code of the ABAQUS

package.

2) The simulations were performed on the specimens

whose geometry is shown in Fig. 2. The pre-

processing was carried out using I-DEAS software

package.

3) The CAX4 elements were used for simulations.

4) The simulation involved 300 elements for specimen

having notch radius of 19.8 mm, and 380 elements
for the specimen having 2.49 mm notch radius.

5) Displacement controlled simulations were per-

formed to compute the local stress state parameters

such as stress triaxiality, equivalent plastic strain,

Von Mises stress, maximum principal stress, etc. as

a function of location and displacement.

3.3. Metallography

The specimens were cut in the center along vertical
planes containing the applied load direction. The speci-

mens were mounted and then polished on the 180-grit

paper. All the polishing was done on wet polishing

Fig. 3. Load�/displacement curve for the notch-tension test specimen

having 19.8 mm notch radius.

Fig. 4. Load�/displacement curve for the notch-tension test specimen

having 2.49 mm notch radius.

Fig. 2. Geometry of notch-tension test specimens.
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papers to avoid particles from the polishing paper from

getting embedded in the soft aluminum matrix; excess

pressures were avoided for the same reason. The

polishing on papers was continued till 1200 grit size.
After this, the lapping cloths were used. The diamond

suspension was used as the abrasive medium. This was

continued till 1-mm suspension, and then the specimens

were polished on 0.3-mm alumina suspensions. Finally,

the polishing was carried out with 0.06-mm colloidal

silica suspensions to get the required metallographic

finish [1]. The specimens were observed under optical

microscope in an unetched condition. Fig. 1 shows the
typical unetched microstructure of the alloy. Observe

that the microstructure contains two types of particles in

the aluminum matrix. The light gray particles are Fe-

based intermetallics, whereas the black particles are

Mg2Si intermetallics. In the present work, it has been

qualitatively observed that damage due to cracking and

void growth around Mg2Si intermetallics is negligible in

comparison to that due to Fe-rich intermetallics. There-
fore, only the void growth around Fe-rich intermetallics

has been quantitatively characterized .

3.4. Quantitative metallography and digital image

analysis

Fig. 6 shows damaged/cracked Fe-rich intermetallic

particles as well as growth of micro-voids around these

intermetallic particles. In the present microstructures,
the voids do not grow around all cracked Fe-rich

particles. Therefore, to characterize the active voids,

the particle cracks having thickness larger than 1 mm are

called voids, and only these features are quantitatively

characterized. The quantitative microstructural mea-

surements were performed using the KS400 image

analyzer with an automatic stage. To avoid the edge

effects in the microstructural fields of view, the con-
tiguous fields were grabbed using a CCD camera

attached to an optical microscope. The fields were

then pasted next to each other in the computer memory

to create a seamless montage of images [9,10]. In the

present work, all the measurements were performed in

the notch region of a representative vertical metallo-

graphic plane containing the applied load direction. Fig.

5 shows the exact locations, where the measurements
were performed in these specimens. At each of the three

locations shown in Fig. 5, the void volume fraction and

size distribution were measured on a high magnification

(500�/) contiguous digital image montage covering 1.08

mm2 area on the metallographic plane, which covers two

elements of the FE-mesh described earlier. The local

equivalent plastic strain, stress triaxiality, maximum

principal stress, von mises stress, etc. were computed
at these exact locations via FE-simulations described

earlier. Volume fraction of voids was estimated by using

standard stereological techniques [11,12]. The three-

dimensional number density, size distribution and
average volumes of voids were estimated by Saltykov’s

technique [11,12]. In this technique, the void section

sizes are converted into true three-dimensional void sizes

based on void diameters. The technique involves the

complex numerical solution of Abel’s integral equation,

which relates the two-dimensional section sizes to true

three-dimensional sizes based on an assumption that the

voids have a spherical shape [11,12]. The three-dimen-
sional number density of voids was calculated from the

size distribution data.

4. Results and discussion

In the notched tension specimens, the deformation is

localized in a very narrow zone, where the stress state is

predominantly triaxial. Fig. 6 shows damaged/cracked

Fe-rich intermetallic particles as well as growth of

micro-voids around these intermetallic particles. Note

that majority of cracks are perpendicular to notched

tensile axis, and the majority of the cracked particles are
also parallel to the loading direction. These observations

suggest that the damage initiation due to particle

cracking is very sensitive to the maximum principal

stress. A significant void growth is observed in notched

tension specimens (Fig. 6b). The smooth uniaxial

tension test specimens [1] did not depict any statistically

significant number of damaged particles with voids on

them, which illustrates that the stress triaxiality is
essential for significant void growth, but it is not

essential for particle cracking (i.e. nucleation of voids).

4.1. Effect of plastic strain and stress triaxiality on void

volume fraction

Figs. 7 and 8 show plots of void volume fraction (%)

versus the local stress triaxiality at the corresponding

Fig. 5. The exact locations in the notch tension test specimens where

the quantitative microstructural measurements have been performed.
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location, for specimens having notch radius of 19.8 and

2.49 mm, respectively. In these plots, the different data

points at each location correspond to the interrupted

notch tension test specimens with different applied

loads/displacements. Observe that for both the notches:

(1) the stress triaxiality decreases significantly from the

center (location 1) to the edge (location 3) of the

specimen in the notch region (Fig. 5); (2) at a given

location, the stress triaxiality does not vary significantly

with the applied load (or displacement) for both the
notches; and (3) at a given location, the void volume

fraction does increase with the applied load/displace-

ment, primarily due to the increase in the equivalent

plastic strain with the increase in the applied load/

displacement. Fig. 9 gives a plot of void volume fraction

(%) versus equivalent plastic strain at the corresponding

location for specimens having 19.8 mm radii. Observe

that at a given location, the volume fraction increases
with the increase in the equivalent plastic strain resulting

from an increase in the applied load/displacement.

Therefore, the void growth is sensitive to both the stress

triaxiality and the equivalent plastic strain.

4.2. Verification of void growth models

The average void volume can be computed from the

ratio of the experimentally measured void volume

fraction and 3D number density of voids computed by

Saltykov’s technique. Numerous analytical void growth

rules have been developed under different assumptions

[2�/6]. Rice and Tracey [6] have developed a void growth
model (see Eq. (1)), which predicts the growth of a

spherical void in an infinite, rigid, perfectly plastic

material subjected to a uniform remote strain field.

Their model assumes that there is only one spherical

void, which is embedded in a rigid perfectly plastic

matrix. The plastic region of the stress�/strain curve of

the present 6061 alloy [1] is quite flat and the value of

the strain-hardening coefficient is quite low (n�/0.068).
Therefore, the alloy behavior can be modeled as a

perfectly plastic material as assumed by Rice and

Tracey. Further, the voids shapes are reasonably

Fig. 6. (a) Micrograph of a notch tension test specimen showing

cracked Fe-rich intermetallics; and (b) void growth around some of the

particles.

Fig. 7. Plot of void volume fraction (%) versus stress triaxiality for specimens having 19.8 mm notch radius.
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equiaxed, and therefore, the voids can be assumed to be

spherical. Thus, the material satisfies the two important

assumptions of Rice and Tracey model, and hence, it is

reasonable to compare the average void volume pre-

dicted by the model with those obtained from the

experimental data. Table 2 gives the average void

volumes calculated from the model and the correspond-

ing experimentally measured values. Observe that the

model underestimates the average void volume for all

specimens, by a factor of 2 or more.

McClintock [2] has proposed a model for void

growth, which predicts growth of an elliptical hole in a

viscous material under an applied stress, using an

axisymmetric geometry. However, McClintock’s model

is considered to be a good approximation for growth of

spherical voids as well, and recently it has been

successfully applied to model damage evolution invol-

ving nucleation, growth, and coalescence of voids in

three-dimensional microstructure of a cast A356 alloy

[7,8]. McClintock’s model (see Eq. (3)) reveals that stress

triaxiality, strain-hardening coefficient, strain rates,

temperature regimes, etc. have dominant influence on

Fig. 8. Plot of void volume fraction (%) versus stress triaxiality for specimens having 2.49 mm notch radius.

Fig. 9. Plot of void volume fraction (%) versus equivalent plastic strain for specimens having 19.8 mm notch radius.

Table 2

Comparison of experimental average void volume and average void

volume predicted by Rice and Tracey model

Displacement

(%)

Experimental average

void volume (mm3)

Theoretical (model) aver-

age void volume (mm3)

Notch 1 (R�19.8 mm) V0 (80%)�64.2 mm3

97 142.5 75

94 174.8 73

89 125 69

Notch 2 (R�2.49 mm) V0 (76%)�98 mm3

94 209 103

85 213 101
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the void growth rate. The average void volume was

calculated by using Eq. (3) with the value of the strain-

hardening coefficient equal to 0.068 and the stresses and

strains computed from FE-simulation. Table 3 gives the

values of average void volume calculated from the

McClintock’s model and the corresponding experimen-

tally measured values. Observe that there is a significant

discrepancy between the predictions of McClintock’s

model and the experimental data on the void growth for

the specimens having notch radius of 2.49 mm. The

main reason for lack of agreement between the void

growth models proposed by Rice and Tracy, and

McClintock, and the experimental data is the interac-

tions between the neighboring voids, which has not been

accounted for in the models. Further, in the present

alloy, even at a given location in the specimen, all the

voids do not nucleate (or get activated) at the same

equivalent plastic strain, i.e. a continuous void nuclea-

tion takes place. Consequently, at a given point in the

load/displacement path of the specimen, the size of given

void also depends on the equivalent plastic strain at

which it nucleated. The continuous void nucleation

leads to a distribution of void sizes, as observed

experimentally. The void growth equations that model

the growth history of a single void are applicable to an

ensemble of voids, only if all voids nucleate simulta-
neously, or if the continuous nucleation events are

accounted for in the void growth and volume fraction

calculations. The present void growth calculations do

not account for such continuous nucleation of voids.

This is another important reason for the lack of

agreement between the experimental data and the

calculated average void volumes. As all analytical void

growth models ignore the interactions among the
neighboring voids, and it is difficult to account for

continuous void nucleation/activation, a good agree-

ment between other analytical void growth models and

the experimental data on average void volume is also

not expected. Therefore, to predict failure locations in

the extruded 6061 Al-alloy components (in T6 condi-

tion) of complex geometry under multi-axial loading

conditions, it is of interest to develop an empirical
damage evolution law from the experimental data.

4.3. Empirical damage evolution equation

The volume fraction of voids has been measured at

different locations in the notch tension test specimens of

two different notch radii, strained to different displace-
ments. The local stresses and strains at these locations

have been computed by using FE-simulations. These

data can be used to develop an empirical relationship

between the void volume fraction, and attributes of local

stresses and strains. The void volume fraction is

governed by the void nucleation and void growth rate,

which are sensitive to stress triaxiality and equivalent

plastic strain. Therefore, an empirical equation contain-

Fig. 10. Empirical damage evolution rule.

Table 3

Comparison of experimental average void volume and average void

volume predicted by McClintock model

Displacement

(%)

Experimental average

void volume (mm3)

Theoretical (model) aver-

age void volume (mm3)

Notch 1 (R�19.8 mm) V0 (80%)�64.2 mm3

97 142.5 208

94 174.8 142

89 125 109

Notch 2 (R�2.49 mm) V0 (76%)�98 mm3

94 209 581

85 213 238
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ing these two parameters is proposed. Fig. 10 shows a

plot of void volume fraction at a given location (Fig. 5)

versus the quantity [op exp(5.78I)] for the corresponding

location, displacement, and notch-radius obtained from
the FE-simulation. Observe that the volume fraction

data for all three locations, four displacements, and two

different notch radii fall on one trend curve. An

empirical equation for the trend curve for the data

trend in Fig. 10 is as follows:

f �a�b ln[op]�cI (4)

where f is the void volume fraction expressed as %, op is

the equivalent plastic strain, and I is the stress triaxi-

ality. In this empirical equation, a , b , and c are material

constants, whose values are a�/�/0.3447, b�/0.2317

and c�/1.34. Eq. (4) is an empirical relationship specific

to the damage evolution in extruded 6061 Al-alloy in

peak-aged (T6) condition. Note that the values of the
constants a , b , and c are expected to depend on the

alloy chemistry, heat treatment, and the initial micro-

structure. This correlation covers the stress triaxiality

values from 0.75 to 1.34, equivalent plastic strain from

0.006 to 0.338, and void volume fraction in the range of

0.14�/1.11%. Note that this empirical equation may be

used for interpolation, but not for extrapolation. The

relationship is useful for computation of the local
microstructural damage (void volume fraction) at dif-

ferent locations in components of complex geometry

subjected to multi-axial loading, where the local stress

states can be calculated for given boundary conditions

by using FE-simulations, provided that the stress

triaxiality and equivalent plastic strains are in interpola-

tion range. Such computations are useful for prediction

of location(s) and load(s) at which the component is
likely to fail [7,8] for given boundary conditions.

5. Summary and conclusions

Void growth has been monitored in a peak-aged 6061

Al-alloy under triaxial stress state via estimation of

volume fraction and number density of voids by using

stereological and image analysis techniques. There is no

agreement between the experimental data on the average

void volume and the predictions of the analytical void
growth models due to interactions between neighboring

voids, which are ignored in the models. The experi-

mental damage data and FE-simulations have been used

to arrive at an empirical damage evolution relationship

between the void volume fraction, local equivalent

plastic strain, and stress triaxiality.
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